X-Ray Reconstruction with the ZEISS DeepRecon

One of the most difficult aspects of X-Ray microscopy is balancing throughput with picture quality. Long acquisition times are required to obtain high-quality pictures, especially when working with big samples. The technology’s extensive acquisition times may limit its use in industrial operations where sample time is crucial, or in situ investigations where great temporal precision is required.

Through the incorporation of neural networks into the image acquisition and reconstruction process, ZEISS DeepRecon allows for dramatic gains in image quality and effective acquisition time. Networks and procedures can be tailored to address unique difficulties associated with repeating samples by collaborating with clients.

This technique has the potential to boost throughput by a factor of 10, improve picture quality and lessen the influence of imaging artifacts, which are common in rapid acquisition workflows.

Highlights

Area of Research

  • Geoscience
  • Manufacturing
  • Semiconductor

Sample Types

  • Semiconductor packages
  • Geological samples
  • Electronics

Related Solutions

  • ZEISS Phase Contrast Enhancer

Deep learning-based image quality improvement with higher throughput for Xradia X-ray microscopes.

Deep learning-based image quality improvement with higher throughput for Xradia X-ray microscopes. Image Credit: Carl Zeiss Microscopy GmbH

Training neural networks to recover image data damaged by noise, restricted projection numbers or samples outside of the field of vision is the structure of neural network-based picture quality enhancement.

Workflow

The Module Workflow Consists of Several Steps

  • ZEISS DeepRecon is a Special Customer Solution (SCS) that is tailored to the use-case and sample class’s individual needs. To begin the conversation about implementing DeepRecon at their facility, contact the local ZEISS salesperson (or fill out the form below)
  • Send a sample of data to the ZEISS XRM team
  • This information is utilized to develop a customized DeepRecon model, which allows for better results
  • This model is imported into a ZEISS Reconstructor system that has been modified
  • Gather information under the conditions mentioned (up to 10X throughput boost relative to standard reconstruction). During sample reconstruction, the customized model will be an available option

Progressive image quality improvement with various reconstruction techniques for Xradia X-ray microscopes.

Progressive image quality improvement with various reconstruction techniques for Xradia X-Ray microscopes. Image Credit: Carl Zeiss Microscopy GmbH

The above image shows the impact of several reconstruction approaches on a sandstone sample, demonstrating progressive picture quality improvement from conventional reconstruction (filtered back projection) through OptiRecon 2.0 (iterative reconstruction) and DeepRecon 2.0 (deep reconstruction) (neural network-based reconstruction).

Required Components

  • ZEISS DeepRecon reconstruction technology
  • ZEISS Xradia Versa XRM

Other Equipment by this Supplier

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.