Posted in | News | Diamond

Researchers Find First Direct Evidence of Diamond Formation Using Redox Freezing Process

Diamonds are not only beautiful and valuable gems, they also contain information of the geological history. By using ultra-thin slices of diamonds, Dorrit E. Jacob and her colleagues from the Macquarie University in Australia and the University of Sydney found the first direct evidence for the formation of diamonds by a process known as redox freezing. In this process, carbonate melts crystallize to form diamond. The slices were prepared by Anja Schreiber of the GFZ German Research Centre for Geosciences in Potsdam, Germany. The work is published in Nature Communications. The study shows that the reduction of carbonate to diamond is balanced by the oxidation of iron sulphide to iron oxides.

The researchers used the new nano-scale technique of Transmission Kikuchi Diffraction to discover rims of the iron oxide mineral magnetite just a few ten thousandths of a millimetre thick around sulphide minerals inside the diamonds. The GFZ's Anja Schreiber prepared these slices using a focussed beam of charged atoms (ions) to ablate the surface. The already ultra-thin slices were re-thinned after being mounted on a carbon-coated copper grid. This process was carried out for the first time successfully on a grid and yielded the data set used for the study.

The results also solve a puzzle that has occupied diamond researchers for decades, namely the over-abundance of sulphide occurring as inclusions in diamond. Iron sulphides are the most common inclusions in diamond even though there is only about 0.02% of sulphur in the mantle: it now appears that the oxidation of the iron sulphides directly causes the formation of the diamonds that include them.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.